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The dielectric constant of a bonded lattice model for water 

D A Lavis and N I Christou 
Mathematics Department, Chelsea College, University of London, Manresa Road, 
London SW3 6LX, UK 

Received 15 June 1977 

Abstract. The formula for the dielectric constant of a liquid, derived by Onsager, is 
modified to take account of the effect, on molecular orientations in water, of hydrogen 
bonding. This is achieved by using the lattice model of Bell. By a suitable choice of 
parameters, isobars are obtained for the dielectric constant as a function of temperature. 
These are in fair agreement with experiment and illustrate well the important role of 
hydrogen bonding. 

1. Introduction 

A water molecule has a permanent dipole moment which we denote by 5, and a static 
polarisability which we denote by a. A simple equation for the temperature depen- 
dence of the static dielectric constant E *  of a fluid of such molecules is that of Debye 
(1912). This equation is based on the assumption that the molecules are independent 
apart from the effect on molecular orientations arising from a uniform internal field. 
The calculation of this internal field, due originally to Lorentz (1909)’ assumes a 
uniform polarisation of the fluid. Owing in part to the inadequacy of this assumption, 
Debye’s equation is unable to account for the dielectric constant of dense fluids. 
Onsager (1936) therefore sought a new model for the polarisation of liquids. He  
chose to represent the molecule as a point dipole at the centre of a spherical cavity of 
volume Vo. By this means he was able to obtain a form for the molecular polarisation 
which took into account its non-uniformity in the neighbourhood of a molecule, His 
equation can be expressed in the form 

where 

being the volume per molecule, EO the permittivity of free space, k Boltzmann’s 
constant and T the absolute temperature. Onsager’s equation is better than Debye’s 
for predicting the static dielectric constant of liquids. Both equations do, however, fail 
to take account of the effect on molecular orientations of local non-electrostatic 
forces. This omission is particularly important in the case of water because of the 
presence of hydrogen bonding. This bonding has a strong correlating effect on the 
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molecular orientations of neighbouring molecules and must be a primary cause of the 
high static dielectric constant of liquid water. 

The first attempt to take detailed account of local forces was that of Kirkwood 
(1939). His equation contains a term dependent on the correlation between the 
orientation of a molecular dipole and the orientations of the dipole moments of 
neighbouring molecules. A number of authors (Oster and Kirkwood 1943, Pople 
1951, Haggis et a1 1952, Bruk-Levinson et a1 1971, Jansoone and Franck 1972) have 
used Kirkwood’s equation to obtain formulae for the dielectric constant of water. 

An alternative to the approach which uses Kirkwood’s equation is that in which 
some modification of Onsager’s equation is made, in order to take account of the 
effects of hydrogen bonding. This has been done by Hobbs et a l ( l966)  using a model 
for liquid water in which a certain percentage of the molecules retain an ice-like 
structure. The purpose of our work is also to obtain a generalisation of Onsager’s 
equation. To do this we adapt the three-dimensional lattice model of Bell (1972). His 
work, based on a body-centred cubic lattice structure with a simple directional- 
bonding model for the water molecule, was successful in providing isobars with the 
characteristic density maximum of liquid water. It is interesting to know whether, in a 
suitably modified form, it is able to provide a satisfactory model for dielectric pro- 
perties. 

2. The lattice model 

We consider a body-centred cubic lattice of N sites and volume V,  per site. We 
suppose that M of the sites are occupied by the centres of molecules, with M S N, 
there being at most one molecule per site and the remaining N - M  sites being vacant. 
Each molecule has four bonding directions (or arms) pointing to the vertices of a 
regular tetrahedron. In the water molecule two bonding directions are associated with 
the nuclei of the hydrogen atoms and two with lone 2p-electrons. A hydrogen bond is 
formed between the bonding arms of two molecules when one arm is that associated 
with a hydrogen nucleus and the other is that associated with a lone 2p-electron. In 
our model the asymmetry of the bond is represented by taking two arms of each 
molecule as ‘positive’ and two as ‘negative’. The bonding arms of a molecule on a 
given lattice site are directed towards four nearest-neighbour sites (see figure 1) and 

--a 
2 

Figure 1. Sites on the body-centred cubic lattice showing a molecule on site 1 in one of its 
twelve orientational states. Sites 1 4  represent a typical tetrahedron of sites used as a 
basis for the Guggenheim and McGlashan (1951) approximation. 
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twelve distinct molecular orientations are therefore possible. A bond is formed 
between a pair of molecules on neighbouring sites if and only if a positive arm of one 
molecule and a negative arm of the other lie along the line of centres, directed in each 
case to the other molecule of the pair. Unlike the two-dimensional triangular lattice 
model of Bell and Lavis (1970) and Lavis (1973, 1975, 1976) there exists in the model 
of Bell (1972), and in the present modification of that model, the possibility of each 
site of the lattice being occupied and each molecule being fully bonded. 

Let the molecules be labelled with an index j for j = 1,2 ,  . . . , M. The permanent 
dipole moment of the jth molecule is 6:) where I&)I = &, and we suppose that the 
direction of the dipole moment bisects the angle between the positive arms of the 
molecule. Associated with any permitted direction of the dipole moment there will be 
two orientational states differing from each other by a rotation through 90”. Let the 
assembly be subject to an external electric field &G, where G is a unit vector 
parallel to one set of edges of the cube formed by the eight nearest neighbours of a 
lattice site. Let the molecular dipoles be in some orientational state {e:?, not 
necessarily that of thermodynamic equilibrium. An important part of the develop- 
ment of mode!s for the dielectric properties of assemblies of molecules is the cal- 
culation of the electric field experienced by the molecules. For the Debye equation 
the polarisation 9 of the medium surrounding the molecules is assumed to be 
uniform. A simple electrostatic calculation (see e.g. Bottcher 1952, p 177) then shows 
that the field at any molecule, in the abseqce of polarisability (a = 0), is the Lorentz 
field dP,+9/3eo. The alternative Onsager development, which we adopt, does not 
suppose a uniform polarisation. Instead it assumes that each molecule is in a spherical 
cavity of volume VO and that the medium exterior to the cavities is at equilibrium with 
dielectric constant E $ .  The field 8:’ in the medium in the vicinity of the jth molecule 
is then related to the corresponding polarisation 9:) by the equation 

Pi)= E O ( € : -  1)8:). (2.1) 
We suppose that 8:) arises from the interaction of the dipole field of the jth molecule 
and the external field on the dielectric medium. In the absence of molecular polaris- 
ability a short electrostatic calculationt gives 

for the field 8,!”(cr = 0) experienced by the jth molecule. Equation (2.2) must now be 
modified to take account of the molecular polarisability a. This can be done using a 
summation method similar to that of Coulson and Eisenberg (1966). The details of 
the calculation are contained in appendix 2 and the result is 

where h is the function defined in equation (1.2). 
The total dipole moment of the jth molecule is given by 

(2.3) 

(2.4) 

?The details of this and subsequent calculations are given in an unpublished appendix which can be 
obtained by writing to the authors. This appendix will henceforth be referred to as appendix 2, to 
distinguish it from the published appendix 1. 
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and we define the total electric moment of the assembly 
M 

@ = 6"' (2.5) 
j - 1  

From equations (2.3)-(2.5) this gives 

The field dP[') can be expressed in terms of the total dipole moment 6") by using 
equations (1.2), (2.3) and (2.4). We have 

The first and second terms in equation (2.3) are the directing and reaction fields acting 
on the permanent dipole moment. (For a discussion of these fields see Bottcher 
(1952).) The first and second terms in (2.7) can be regarded as the corresponding 
fields acting on the total dipole moment. 

We shall throughout this work suppose that, if a molecule has its permanent dipole 
moment oriented perpendicular to the external field, then it is equally likely to be in 
any one of the states with this orientation. This implies that the electric moment must 
be of the form @ = O f .  We define the conditional probability +(l) that a site is 
occupied by a malecule in a particular state with f . tP = ltp, for 1 = -1, 0, +1, given 
that it is occupied by a molecule. These probabilities satisfy the normalisation condi- 
tion 

1 = 2+(+1)+8+(0)+2+(-1). (2.8) 
It is clear that 

We define the dimensionless parameters a* = a/ V, and Y = VJ Vo, the reduced 
external field %': = ( Vr~o%'e)/tp and the reduced electric moment per molecule = 

@/([a). From equations (2.6) and (2.9) we have 

(2.10) 

To obtain from equation (2.10) the required expression for the dielectric constant of 
water we must calculate the thermodynamic equilibrium values of (c!(+l) and 4(-1). 
To do this we construct a statistical mechanical model which takes account of the 
effects of hydrogen bonding. In the course of this work we need the contribution 
e,(%:, {+(I)}) per molecule to the internal energy, which arises from electrostatic 
effects. This is not difficult to obtain. The details of the calculation are given in 
appendix 2 and the final form is 

e,($$, {+(l)}) = -2%$Bk2)(+(+1)- +(-1))+ C(E$),  (2.11) 
where 

3 v h ( a * v ;  €2)~; 
B(&) = 2€2+ 1 

(2.12a) 
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and 
vuh((Y*v; €2)(1-€$) 

C(&) = 3(262+ 1) ’ 
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(2 .12b)  

the parameter U = ,$/(eo Vs) having the dimensions of energy. 

3. The first-order approximation 

As indicated at the beginning of 0 2 a bond will be formed between a pair of molecules 
on neighbouring sites if and only if the line between the molecules is occupied by the 
negative arm of one molecule and the positive arm of the other. The interaction 
energy of a bonded pair of molecules is - ( w  + z )  with z 5 0 and w > 0. In all other 
cases with a pair of molecules occupying neighbouring sites the interaction energy is 
-z and we neglect interaction energies for molecule pairs which do not occupy 
neighbouring sites. On the basis of these interactions alone the ground state of the 
system, for all pressures, would be one in which every site of the lattice is occupied 
(M = N )  and the molecules form two interpenetrating fully-bonded structures of the 
ice I(c) type. In order for our model to be water-like we need to provide for the 
possibility of a low-density ice I(c) structure (M = N / 2 )  being the stable ground state 
at low pressures. This we do, following Bell (1972), by including a positive energy u / 3  
associated with the occupation of any triad of sites where two second-neighbour sites 
share a common first neighbour (see figure 1). 

As in the work of Bell (1972) the first-order approximation of Guggenheim and 
McGlashan (1951) will be used based on a tetrahedron of sites (see figure 1). We 
consider an assembly composed of N groups of sites in order to give the correct 
number 4 N  of nearest-neighbour pairs. In table 1 we classify the possible occupation 
states of the basic tetrahedron of sites. The index i is that of Bell (1972). It serves to 
distinguish between configurations with different non-electrostatic energies {el}. The 
energies {e , }  are listed in table 1, where for every occupied triad of sites we have 
included an energy U rather than 4 3 .  This is to compensate for the fact that the ratio 
of triads to first-neighbour pairs on the lattice is 3 :  1 but on the tetrahedron is 1 : 1. 
(Two out of every three triads are neglected in the division of the lattice into 
tetrahedra with sites, but not edges, in common.) 

The effect of introducing molecular dipole moments and an external field is to 
reduce the degeneracies associated with the configurations as compared to those of 
Bell. We need to distinguish between different configurations with the same index i 
according to the number of molecules oriented in particular directions with respect to 
the external field. As indicated above we shall assume a random distribution with 
respect to all directions perpendicular to the external field. Configurations are then 
classified using the integer triplets ( i ;  r,, s,), where r, is the aggregate number of 
molecules in the direction of the field and s, is the number of molecules perpendicular 
to the field. The number of occupied sites corresponding to the configuration ( i ;  r,, s,) 
is independent of r, and s, and is denoted by n,. The numbers of molecules with 
orientations in the direction of the external field and in the opposite direction to the 
external field are given respectively by (n, + rl - s,)/2 and (n,  - r, - s , ) / 2 .  The 
degeneracy w ( i ;  r,, s , )  associated with the configuration ( i ;  r,, s,) must satisfy the 
condition 

(3.1) w ( i ;  r,, s , ) = w ( i ;  -r,, s,). 
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Table 1. Classification of possible occupation states of the basic tetrahedron of sites. 

i Configuration n, e, 
~ 

1 

2 

3 

4 

5 

8 

9 

10 

~~ 

0 
0 0  
0 
0 

3 0  
0 
0 

0 0  
0 

/ O  
0 
0 

0 0  
0 

/ O  
0 

0 
0 0  

0 

/ a i  
/ 0  

0 

0 
0 0  

0 

0 

1 

2 

2 

2 

3 

3 

4 

4 

4 

0 

0 

0 

- W - Z  

-2 

- w - 2 z + u  

-22 + U 

-2w -42 i 4 u  

-w -42  +4u 

-42 +4u 

Explicit listing of all degeneracies would be very space consuming. It would also be 
unnecessary since we need them only as coefficients in particular functions. These 
functions are given for future use in appendix 1. 

We define the probability p ( i ;  ri, s i )  that the lattice group is in any one particular 
state described by (i ; ri, s i ) .  These probabilities satisfy the normalisation condition 

and are related to the single site probabilities 4(+1), +(O) and 4(-1), defined in 0 2, 
by 

( 3 . 3 ~ )  

(3.36) 
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( 3 . 3 c )  

where p = M / N  is the molecular number density, related to the volume tr per mole- 
cule by pu = V,. From equations ( 2 . 8 )  and ( 3 . 3 )  

We obtain the thermodynamic equilibrium state by considering a system in 
chemical isolation and in thermal and mechanical equilibrium with its environment, 
which has absolute temperature T and exerts a pressure P. The thermodynamic 
potential per molecule for such a system is the chemical potential p(28:, { p ( i ;  ri,  si)}). 
This is given by 

/~(ge*r Mi; T i ,  si)}) 
L = - P V , + e , ( { p ( i ;  Ti ,  s i)})+es(s,*,  { $ ( l ) } ) - l k T  In g ( { p ( i ;  ri, Si)}) ( 3 . 5 )  
P P 

where 

( 3 . 6 )  

is the non-electrostatic configuration energy per molecule and the electrostatic 
contribution e,(%,*, {$(1)})  to the energy per molecule is given by equation (2 .11) .  The 
configurational counting factor g ( { p ( i ;  ri, si)}) is calculated according to the method of 
the Guggenheim and McGlashan approximation. We write 

and impose the condition 

( 3 . 8 )  

where the summation is over all { p ( i ;  ri, si)}  compatible with ( 3 . 2 )  and ( 3 . 3 )  with fixed 
values of {$( l )}  and p. It can be shown that the summation on the right-hand side of 
( 3 . 8 )  can be approximated by its largest term. This is given (see appendix 2 )  by 

( $ ( o ) s , ( ~ ( - i ) ) ~ ( f l i - r i - s , ) p f l i ( i  - p ) 4 - n l  , ( 3 . 9 )  I (nl+ri-si) p ( i ;  T i ,  s l > = ( $ ( + l ) )  

and from equations (2.11), (3.5)-(3.9) we have 

 CL(^:, { ~ ( i ;  rir si)}) 
1 
P 

= -PV, -  2 8 3 3 ( 4 ( $ ( + 1 ) -  $ ( - l ) ) +  C(E2) 
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-3kT[2$(+1) In $(+1)+ 8$(0) In $(0)+2$(-1) In $(-l)+ln p 

+ ( p - l -  1)ln (I-p)]. (3.10) 

We minimise the chemical potential with respect to { p ( i ;  ri, si)} and p at constant 
S,*, P and T. The variables { $ ( l ) )  are given by (3.3). The details of the calculations 
are given in appendix 2. A compact form for the results is in terms of the new 
variables 8, 4 and x, the function F defined by equation (A.15) or (A.16) and the 
parameters {Pi} defined in equation (A.14). We have 

(3.11) 

(3 .12~)  

and 

where 

(3.12~)  

(3.13) 

(3.14) 

Substituting from equations (3.1 lk(3.14) we have the equilibrium expression for the 
chemical potential 

CL@$, Mi; ri, si)))) 

(3.15) 

Equation (3.13) relates the four variables ( p ) ,  8, 4 and x at constant 8,*, P and T. In 
order to completely determine these variables we need three more equations. These 
are given by substituting from (3.11) into (3.4) and from (3.12) into (3.3). We have 

and 

(3.16) 

(3.17) 

(3.18) 

where the functions F1, FZ and F3 are defined in equations (A.17)-(A.21). 
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Consider now the case where Gp,* = 0. It follows from equation (A.22) that (3.17) 
has a solution 8 = 0 and from (A.25) that (3.18) has a solution (b = 0. From (3.17) 

s,*s(c~)(l + 3f({&}; x)) 
4kT 

8 -  

as zP,*+O, where 

and 

aFl a2F 
ae ae2’ 

Fll =-=- 

Substituting in equations (3.120) and (3.12~)  

and 

and hence from equations (2.10) and (2 .12~)  

(3.19) 

(3.20) 

(3.21) 

(3 .22~)  

(3,226) 

(3.23) 

In the limit as the external electric field tends to zero, the static dielectric constant E *  

arising from the molecular dipoles is given by 

(T ) (P )  - ( E *  - 1 ) e  (3.24) 

and imposing the consistency condition 

E’ = E*  (3.25) 

we have from equation (3.23) 

(E*  - 1)(2E* + 1) 
E *  

uh(a*v; E*lf ({Pih  X I + ,  
= 3(p)h(a*v; €*)( 3kT 

(3.26) 

Equation (3.26) is the generalisation of Onsager’s equation which takes account of the 
effects of hydrogen bonding. From equations (A.27) and (3.20) 

f({l}; XI’  1 (3.27) 

and in this case, where all interaction energies are set equal to zero, equation (3.26) 
reduces to (1.1). 

The variables ( p )  and x which feature in equation (3.26) are obtained as a solution 
o€ equations (3.13) and (3.16) with e=(b=O. To obtain the liquid-vapour phase 
transition we use Maxwell’s rule and equation (3.15) with G(0, 0, 0)= 3. 

It will be observed that, throughout our calculations of the equilibrium state, we 
have treated €2 as a constant, applying the consistency condition (3.25) only at the 
final stage of the work. The result of this assumption is that, in the zero electric field 
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limit, equations (3.13) and (3.15) are equivalent to equations (4.5) and (4.2) respec- 
tively of Bell (1972), the term C ( E ~ )  in equation (3.15) being a constant which affects 
only the zero point of the chemical potential. An alternative treatment would be to 
assume that E: = ~ z ( p ,  T )  in equation (3.10). Equation (3.13) would then contain the 
partial derivative of e: with respect to p .  After application of the consistency condi- 
tion this partial derivative could be obtained by differentiating equation (3.26). This 
in turn would produce the partial derivative of x with respect to p which would have 
to be derived by differentiating equation (3.16). Although this treatment would be 
physically more satisfactory in that it would lead to an electrostatic effect on the 
isobars, it would be very much more complicated. Our method which is equivalent to 
neglecting C(e2)  in equation (2.11) can be regarded as an approximation to this more 
difficult work. 

4. Results and discussion 

The main purpose of this work is to obtain, for our model, curves of the dielectric 
constant of liquid water against temperature along isobars. Equation (3.26), which is 
our equation for the dielectric constant, contains the variables ( p )  and x. The values 
of these variables at fixed values of the reduced temperature T* = (kT/w) and the 
reduced pressure P* = (PV,/w) are obtained from equations (3.13) and (3.16) (with 
8 = q5 = 0). A consequence of our assumption that E ;  is a constant is that the isobars 
of our model are exactly those of Bell (1972) with the same values of the critical point 
parameters and the same liquid-vapour transition temperature at fixed pressure. 

One difficulty associated with the use of a lattice model, like that of Bell, is that the 
pressure and temperature are given in reduced form. Comparison with experiment 
involves calculation of the energy parameter w and the volume per site V,. We also 
need to assume some values for the energy ratios (z/w) and (u/w). Bell calculated 
four points on the reduced temperature scale; the critical temperature T,*, the 
liquid-vapour transition temperature TZ, and the temperatures T,* and T,* at which 
the density is maximum and the compressibility is minimum, respectively, along an 
isobart. The last three of these are, of course, functions of pressure and all four are 
dependent on the ratios ( z / w )  and ( u / w ) .  The strategy adopted by Bell was, for a 
number of different values of ( z / w )  and ( u / w ) :  

(i) to calculate the reduced atmospheric pressure P$ using the formula 

P,* = Pf(P,/Pd (4.1) 
where P, and P, are the experimental values of the atmospheric and critical pressures 
respectively; 

(ii) to calculate TZ, T,* and T,* along the isobar P* = P,*. 
Of the three values of the pair ( z / w ,  u/w) chosen by Bell, in only one case, that of 

z/w = 2.0, u/w = 1.25, was T,* < TZ. Since this condition is essential for our work, 
these are the values for the energy ratios which we have chosen. In table 2 we list the 
reduced critical temperature and pressure together with the reduced atmospheric 
pressure, derived from equation (4. l),  and the phase transition and density maximum 
temperatures on the isobar. 
t A further point on the reduced temperature scale would be obtained by the introduction of long-range 
ordering and the calculation of the liquid-solid phase transition temperature, as has been done in the case of 
the two-dimensional triangular model of Bell and Lavis (1970) by Lavis (1973). This work is underway. 
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Table 2. Experimental data required for the present calculations together with the results 
of the calculations. 

Experimental dataa 

T, = 647.30 K 
Tb=373.15K 
TQ=277.15K 
P , = 2 ~ 2 1 ~ 1 O ’ N m - ~  
Pa = 1.01 x lo5 N 
6, = 6.14 x C m 
a = 21.11 x m3 

Critical point data 
(z/w)=2.0,  ( u / w ) =  1.25 

On the atmospheric isobar 

P: = 0*00024 
Tz = 0,5879 
T,” = 0.4927 

Derived quantities 

w = 65.99 X lo-’* J 
(a/w)=41.88 

v,= 15.39X 1 0 - ~ ~ ~ ~  
a* = 1.37 

a From Eisenberg and Kauzmann (1969). 

To calculate the energy parameter w and the volume V, per site we use the 
equations 

w = kT,/T$ 

and 

v, = wP$/P,.  

(4.2) 

(4.3) 
The necessary experimental data, together with the results of our calculations are 
given in table 2. It is difficult to make a direct comparison with experiment for w, but 
V,  can be compared with the value 16.01 X m3 derived from the body-centred 
cubic structure of ice I(c) and the value 18-77 X lod3’ m3 derived from the maximum 
in the radial distribution function of liquid water (see Eisenberg and Kauzmann 1969, 
pp 83 and 159 respectively). To complete our set of fixed parameters we need values 
for ( g / w )  and a*. For the permanent dipole moment and polarisability of the water 
molecule we use values derived from experiment. These are given in table 2, together 
with the results of our calculations. 

Using the values for the reduced boiling and maximum density temperatures, 
together with their experimental values given in table 2, we calculate a reduced 
freezing temperature T? = 0.4887. Atmospheric isobars for the static dielectric 
constant are obtained in the range [TF, T,*] of reduced temperatures for varying 
values of the parameter v = V,/ Vo. Equating this range of reduced temperatures with 
the experimental range [273.15 K,373*15K]  we display our results in figure 2, 
together with the experimental curve for the static dielectric constant derived from the 
values of Malmberg and Maryott (1956). As the value of v increases (and thus for 
fixed V,  the value of Vo decreases) our curve rises to higher values at all temperatures. 
For v = 0.505 we have a curve within 6% of the experimental values for the whole 
temperature range. In this context it is interesting to note that Onsager (1936) chose a 
cavity of.volume equal to the volume per molecule. This, in our notation, corresponds 
to v = ( p ) .  The value v=0.505 is quite close to the molecular number density 
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I 
273 .15 323.15 373 15 

T I K )  

Hgure 2. Curves for the static dielectric constant, plotted against abcolute temperature 
along the atmospheric isobar for various values of the parameter Y = V,/V,. The broken 
curve represents the experimental results of Malmberg and Maryott (1956). 

predicted by our model (see Bell 1972, figure 2). Since our model effectively provides 
an equation of state relating pressure, density and temperature, we are able to obtain 
isotherms for the dependence of the dielectric constant on the pressure. A selection of 
these curves is shown in figure 3. As is to be expected the dielectric constant is a 
monotonically increasing function of pressure. 

In figure 4 our curve (with v = 0.505) for the dielectric constant against tempera- 
ture’ along the atmospheric isobar, is displayed together with the experimental curve 
and the theoretical curves derived by other authors. With the exception of the curve 
of Hobbs et a1 (1966) all these results have been obtained by application of Kirk- 
wood’s equation (Kirkwood 1939). Oster and Kirkwood (1943) applied Kirkwood’s 
equation to the problem of the dielectric constant of water, taking into account the 
effect on the orientation and polarisation of a molecule of only the shell of first- 
neighbour molecules. Pople (195 1) applied Kirkwood’s equation to his own distorted 
hydrogen bond model. He took into account the effects of the first three shells of 
nearest neighbours on the molecular orientation, but restricted the contribution to 
molecular polarisation to the shell of first neighbours. His results have since been 
modified by Eisenberg and Kauzmann (1969) to include the effects of the first three 
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shells f n  

Figure 3. Curves for the static dielectric constant, plotted against pressure along various 
isotherms. The curves are labelled with their values of absolute temperature and the 
horizontal axis changes scale at P = 1.5 x 10’ N m-?. The curves drop vertically at the 
transition to the vapour state. 

ighbours on polarisation (see Eisenberg and Kauzmann 1969, figure 4.17, 
p 190). The resulting curve corresponds well with the experimental curve. Haggis eta1 
(1952) apply Kirkwood’s equation to a mixture model. They assume that a certain 
fraction of hydrogen bonds is broken at any given temperature and that the liquid is a 
mixture of molecules forming 0, 1, 2, 3 and 4 hydrogen bonds. In order to give 
agreement with experiment they chose the fraction of broken bonds at 273.15 K to be 
0.09 and determined the fraction of broken bonds at other temperatures from ther- 
modynamic considerations. This gave a curve for the dielectric constant in good 
agreement with experiment. More recently Bruk-Levinson et a1 (1971) have applied 
the potential of Stockmayer (1941) in order to obtain the molecular correlation 
function of Kirkwood’s equation and Jansoone and Franck (1972) have used the 
approach of Wertheim (1971) based on the mean spherical model. In neither of these 
cases is the result particularly satisfactory. Finally the work of Hobbs et a1 (1966) 
should be referred to. This is based on a generalisation of Onsager’s equation in 
which a certain fraction of molecules are assumed to be solid-like and the remaining 
molecules are assumed to be gas-like. Since they have calculated values of the 
dielectric constant in the liquid range at only freezing and boiling temperatures, it is 
difficult to assess their results. 

We would not attempt to pretend that we have with our model derived the most 
accurate theoretical curve for the dielectric constant so far obtained. Indeed the 
results of Hasted et a1 (1952) and of Pople (1951), modified by Eisenberg and 
Kauzmann (1969), give good agreement with experiment. The main point about our 
model is that it is more nearly ‘complete’ than previous work. We need take from 
experiment only the critical point data, the freezing, maximum density and boiling 
temperatures and the values of the dipole moment and polarisability of the molecule, 
Once this is done the curve for the dielectric constant can be derived. For all 
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Figure 4. Curves for the static dielectric constant, plotted against temperature along the 
atmospheric isobar. The broken curve represents the experimental results of Malmberg 
and Maryott (1956), the chain curve is given by the present work with Y = 0.505, z / w  = 
2.0, u / w  = 1.25 and the dotted curve is the corresponding curve for the ‘pure’ Onsager 
equation. The full curves are the theoretical curves of: A, Oster and Kirkwood (1943); B, 
Pople (1951); C, Haggis er a2 (1952); D, Bruk-Levinson et a1 (1971); E, Jansoone and 
Franck (1972); F, Hobbs er a1 (1966). 

calculations based on the Kirkwood equation, experimental data (density, number of 
bonded molecules etc) are needed at successive points along the curve. This also 
applies to the modified Onsager model of Hobbs et a1 (1966). Another important 
advantage of our model is that it enables us to distinguish clearly between the effects 
on molecular orientation of long-range electrostatic forces and short-range bonding 
interactions. In figure 4 we have, for the sake of comparison, included the curve 
corresponding to the ‘pure’ Onsager equation ( l . l ) ,  where v = V, / (p )  is given, as 
before, by equation (3.16) with 8 = 4 = 0. The difference between the curve for our 
modified Onsager equation and that of the pure Onsager equation clearly illustrates 
the important role of hydrogen bonding in producing the high dielectric constant of 
water. 
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Appendix 1 

For the molecular configurations on the lattice group, given in table 1, we define the 
functions 

R(i; e, 4) = w(i,  r,, si> exp(8ri + 4s i )  i = l , 2 , .  . . ,  10, (A.l) 

where the summation is over all values of ri and s, compatible with the particular 
configuration i. It is clear that 

R(1; e ,4)=w(1;0 ,0)=1 (A.2) 

q.si  

and 

R(2; 8 , 4 )  = 4(2 ee + 8 em + 2 e-e) = 16x(B, 4) ,  

x(e, 4)=coshB+2ed .  

where 

Since the two molecules in state 3 are, once placed on a particular pair of sites, free to 
assume any orientations, we have 

(A.5) ~ ( 3 ;  e, 4 )  = 32x2(e, 4).  
For configuration 4 

R(4; 6, 4)=4(e2e+4e 'e+m'+8e2 '+4 e'-e"'+e-2e)=8y(8, 4), (A.6) 
where 

y(e ,4)  = cosh 28 + 4  e' cosh e +4 e? ('4.7) 

The corresponding R for configurations 5 to 10 can now be expressed entirely in terms 
of the functions x and y. We have 

( A 4  

(A.9) 
(A. 10) 

(A. 11) 

(A. 12) 
and 



2168 D A Lavis and N I  Christou 

It is clear that n(i; 0,O) is identical to the degeneracy wi of Bell (1972). In terms of 
the energies {ei} given in table 1 we define 

Pi = exp(-ei/kT) i = l , 2  ,..., 10, (A.14) 

and the function 

We shall also need 

Fl({Pi);.e, 4, x) 

= C  PiniWe, 4) expkni). 
i 

It is clear, from equation (3. l), that 

Fl({Pi}; 099,  x ) = O  

and using the results that 

(") = $ x ( O , O )  a# e=&=o 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

( A . 2 3 ~ )  
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(A.236) 

it is not difficult to show that 

a2(i, 0 ,  0 )  = $ n i a ( i ;  o,o), (A.24) 

(A.25) 

(A.26) 

where the summation is over all configurations for which ri = r, si = s and ni = n, it can 
be seen that 

(A.27) F((1); 8,4, x) = [ 1 + 4 ex(cosh 8 + 2 
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