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The dielectric constant of a bonded lattice model for water

D A Lavis and N I Christou

Mathematics Department, Chelsea College, University of London, Manresa Road,
London SW3 6LX, UK

Received 15 June 1977

Abstract. The formula for the dielectric constant of a liquid, derived by Onsager, is
modified to take account of the effect, on molecular orientations in water, of hydrogen
bonding. This is achieved by using the lattice model of Bell. By a suitable choice of
parameters, isobars are obtained for the dielectric constant as a function of temperature.
These are in fair agreement with experiment and illustrate well the important role of
hydrogen bonding.

1. Introduction

A water molecule has a permanent dipole moment which we denote by &, and a static
polarisability which we denote by a. A simple equation for the temperature depen-
dence of the static dielectric constant €* of a fluid of such molecules is that of Debye
(1912). This equation is based on the assumption that the molecules are independent
apart from the effect on molecular orientations arising from a uniform internal field.
The calculation of this internal field, due originally to Lorentz (1909), assumes a
uniform polarisation of the fluid. Owing in part to the inadequacy of this assumption,
Debye’s equation is unable to account for the dielectric constant of dense fluids.
Onsager (1936) therefore sought a new model for the polarisation of liquids. He
chose to represent the molecule as a point dipole at the centre of a spherical cavity of
volume V. By this means he was able to obtain a form for the molecular polarisation
which took into account its non-uniformity in the neighbourhood of a molecule. His
equation can be expressed in the form

(€*=1)2e*+1) 3h(a/Vo;e€*) £2h(a/ Vo, €%)
e* B v ( 3eokT +a>, (1.1)
where
2/ y—1\]"
h(";”:[l_?xgyﬂ” ’ 1.2)

v being the volume per molecule, €, the permittivity of free space, k Boltzmann’s
constant and T the absolute temperature. Onsager’s equation is better than Debye’s
for predicting the static dielectric constant of liquids. Both equations do, however, fail
to take account of the effect on molecular orientations of local non-electrostatic
forces. This omission is particularly important in the case of water because of the
presence of hydrogen bonding. This bonding has a strong correlating effect on the
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molecular orientations of neighbouring molecules and must be a primary cause of the
high static dielectric constant of liquid water.

The first attempt to take detailed account of local forces was that of Kirkwood
(1939). His equation contains a term dependent on the correlation between the
orientation of a molecular dipole and the orientations of the dipole moments of
neighbouring molecules. A number of authors (Oster and Kirkwood 1943, Pople
1951, Haggis et al 1952, Bruk-Levinson et al 1971, Jansoone and Franck 1972) have
used Kirkwood’s equation to obtain formulae for the dielectric constant of water.

An alternative to the approach which uses Kirkwood’s equation is that in which
some modification of Onsager’s equation is made, in order to take account of the
effects of hydrogen bonding. This has been done by Hobbs er al (1966) using a model
for liquid water in which a certain percentage of the molecules retain an ice-like
structure. The purpose of our work is also to obtain a generalisation of Onsager’s
equation. To do this we adapt the three-dimensional lattice model of Bell (1972). His
work, based on a body-centred cubic lattice structure with a simple directional-
bonding model for the water molecule, was successful in providing isobars with the
characteristic density maximum of liquid water. Itis interesting to know whether, in a
suitably modified form, it is able to provide a satisfactory model for dielectric pro-
perties.

2. The lattice model

We consider a body-centred cubic lattice of N sites and volume V; per site. We
suppose that M of the sites are occupied by the centres of molecules, with M <N,
there being at most one molecule per site and the remaining N — M sites being vacant.
Each molecule has four bonding directions (or arms) pointing to the vertices of a
regular tetrahedron. In the water molecule two bonding directions are associated with
the nuclei of the hydrogen atoms and two with lone 2p-electrons. A hydrogen bond is
formed between the bonding arms of two molecules when one arm is that associated
with a hydrogen nucleus and the other is that associated with a lone 2p-electron. In
our model the asymmetry of the bond is represented by taking two arms of each
molecule as ‘positive’ and two as ‘negative’. The bonding arms of a molecule on a
given lattice site are directed towards four nearest-neighbour sites (see figure 1) and
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Figure 1. Sites on the body-centred cubic lattice showing a molecule on site 1 in one of its
twelve orientational states. Sites 1—4 represent a typical tetrahedron of sites used as a
basis for the Guggenheim and McGlashan (1951) approximation.
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twelve distinct molecular orientations are therefore possible. A bond is formed
between a pair of molecules on neighbouring sites if and only if a positive arm of one
molecule and a negative arm of the other lie along the line of centres, directed in each
case to the other molecule of the pair. Unlike the two-dimensional triangular lattice
model of Bell and Lavis (1970) and Lavis (1973, 1975, 1976) there exists in the model
of Bell (1972), and in the present modification of that model, the possibility of each
site of the lattice being occupied and each molecule being fully bonded.

Let the molecules be labelled with an index j for j=1,2,..., M. The permanent
dipole moment of the jth molecule is &” where |£°| = &, and we suppose that the
direction of the dipole moment bisects the angle between the positive arms of the
molecule. Associated with any permitted direction of the dipole moment there will be
two orientational states differing from each other by a rotation through 90°. Let the
assembly be subject to an external electric field &.= &.k, where K is a unit vector
parallel to one set of edges of the cube formed by the eight nearest neighbours of a
lattice site. Let the molecular dipoles be in some orientational state {g{,"’}, not
necessarily that of thermodynamic equilibrium. An important part of the develop-
ment of models for the dielectric properties of assemblies of molecules is the cal-
culation of the electric field experienced by the molecules. For the Debye equation
the polarisation 2 of the medium surrounding the molecules is assumed to be
uniform. A simple electrostatic calculation (see e.g. Béttcher 1952, p 177) then shows
that the field at any molecule, in the absenge of polarisability (a =0), is the Lorentz
field &.+ 2 /3ec. The alternative Onsager development, which we adopt, does not
suppose a uniform polarisation. Instead it assumes that each molecule is in a spherical
cavity of volume V; and that the medium exterior to the cavities is at equilibrium with
dielectric constant €. The field &4 in the medium in the vicinity of the jth molecule
is then related to the corresponding polarisation 2 by the equation

PP =eo(eX-1)8. (2.1)

We suppose that & arises from the interaction of the dipole field of the jth molecule
and the external field on the dielectric medium. In the absence of molecular polaris-
ability a short electrostatic calculationt gives
: 3er8.  2ek-1)¢Y
& (a=0)= g+ 20 :

@ =0 T " S Voeoe 2+ 1) @2)
for the field & "(a = 0) experienced by the jth molecule. Equation (2.2) must now be
modified to take account of the molecular polarisability a. This can be done using a
summation method similar to that of Coulson and Eisenberg (1966). The details of
the calculation are contained in appendix 2 and the result is

‘ 3eX&.  2(eX-1)¢P
8= ha/ Vo ) Sops gy m—s ), .
@/ Vo em\ 3% 1t 3Voeo2e + 1) @3)
where 4 is the function defined in equation (1.2).
The total dipole moment of the jth molecule is given by
V= £+ ae 8" (2.4)

t The details of this and subsequent calculations are given in an unpublished appendix which can be
obtained by writing to the authors. This appendix will henceforth be referred to as appendix 2, to
distinguish it from the published appendix 1.
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and we define the total electric moment of the assembly

M .
CEDW AL 2.5)

j=1
From equations (2.3)-(2.5) this gives

JaecMeX8, M .
e ¥ ).

2.6
2eX+1 i= (2.6)

© = h(a/ Vo )
The field & can be expressed in terms of the total dipole moment £” by using
equations (1.2), (2.3) and (2.4). We have

o _ 3ende 2(eX-1)¢"
"o 2eX+1 3eoVo(eX+1)

The first and second terms in equation (2.3) are the directing and reaction fields acting
on the permanent dipole moment. (For a discussion of these fields see Bottcher
(1952).) The first and second terms in (2.7) can be regarded as the corresponding
fields acting on the total dipole moment.

We shall throughout this work suppose that, if a molecule has its permanent dipole
moment oriented perpendicular to the external field, then it is equally likely to be in
any one of the states with this orientation. This implies that the electric moment must
be of the form @ =@k We define the conditional probability ¢ (/) that a site is
occupied by a malecule in a particular state with k. &, = ¢, for 1=-1, 0, +1, given
that it is occupied by a molecule. These probabilities satisfy the normalisation condi-
tion

(2.7)

1=24(+1)+8¢(0)+2¢(-1). (2.8)
It is clear that

£.(% &)= 2Me -y 9)

We define the dimensionless parameters a*=a/V, and v = V,/V,, the reduced
external field & =(V,e0%.)/¢, and the reduced electric moment per molecule n =
@/(£,M). From equations (2.6) and (2.9) we have

1 M 3a*e,’§%’§k)

—_— — = + — — . .
2(h(a*v;e.f,) 2eX+1 vED)-v(=1) (2.10)

To obtain from equation (2.10) the required expression for the dielectric constant of
water we must calculate the thermodynamic equilibrium values of ¢ (+1) and ¢(—1).
To do this we construct a statistical mechanical model which takes account of the
effects of hydrogen bonding. In the course of this work we need the contribution
es(€, {¢(D)}) per molecule to the internal energy, which arises from electrostatic
effects. This is not difficult to obtain. The details of the calculation are given in
appendix 2 and the final form is

es(BE (DN = —2&EB(en)W(+1) =Y (-1))+ C(eh), (2.11)
where
3oh(a*v; eX)ek

Blex)= 2eX+1

(2.12a)
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and
voh(a*v; eX)(1—-¢€X)
3Qek+1) ’

the parameter o = £2/(eo Vs) having the dimensions of energy.

Clem)=

(2.125)

3. The first-order approximation

As indicated at the beginning of § 2 a bond will be formed between a pair of molecules
on neighbouring sites if and only if the line between the molecules is occupied by the
negative arm of one molecule and the positive arm of the other. The interaction
energy of a bonded pair of molecules is —(w +2z) with z =0 and w>0. In all other
cases with a pair of molecules occupying neighbouring sites the interaction energy is
—z and we neglect interaction energies for molecule pairs which do not occupy
neighbouring sites. On the basis of these interactions alone the ground state of the
system, for all pressures, would be one in which every site of the lattice is occupied
(M = N) and the molecules form two interpenetrating fully-bonded structures of the
ice I(c) type. In order for our model to be water-like we need to provide for the
possibility of a low-density ice I(c) structure (M = N/2) being the stable ground state
at low pressures. This we do, following Bell (1972), by including a positive energy u/3
associated with the occupation of any triad of sites where two second-neighbour sites
share a common first neighbour (see figure 1).

As in the work of Bell (1972) the first-order approximation of Guggenheim and
McGlashan (1951) will be used based on a tetrahedron of sites (see figure 1). We
consider an assembly composed of N groups of sites in order to give the correct
number 4N of nearest-neighbour pairs. In table 1 we classify the possible occupation
states of the basic tetrahedron of sites. The index i is that of Bell (1972). It serves to
distinguish between configurations with different non-electrostatic energies {e;}. The
energies {e;} are listed in table 1, where for every occupied triad of sites we have
included an energy u rather than «/3. This is to compensate for the fact that the ratio
of triads to first-neighbour pairs on the lattice is 3:1 but on the tetrahedron is 1:1.
(Two out of every three triads are neglected in the division of the lattice into
tetrahedra with sites, but not edges, in common.)

The effect of introducing molecular dipole moments and an external field is to
reduce the degeneracies associated with the configurations as compared to those of
Bell. We need to distinguish between different configurations with the same index i
according to the number of molecules oriented in particular directions with respect to
the external field. As indicated above we shall assume a random distribution with
respect to all directions perpendicular to the external field. Configurations are then
classified using the integer triplets (i;r;, s;), where r; is the aggregate number of
molecules in the direction of the field and s; is the number of molecules perpendicular
to the field. The number of occupied sites corresponding to the configuration (i; r;, s;)
is independent of » and s; and is denoted by n,. The numbers of molecules with
orientations in the direction of the external field and in the opposite direction to the
external field are given respectively by (m;+r—s;)/2 and (m;—r,—s)/2. The
degeneracy w(i;r;, s;) associated with the configuration (i;r,s;) must satisfy the
condition

w(i;r s)=w(i;—r,s). 3.1
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Table 1. Classification of possible occupation states of the basic tetrahedron of sites.

i Configuration n; e

1 O O 0 0
0]
®

2 O O i 0
@)
®

3 O O 2 0
®

B~
O
[
[
3
|
N

O
[ ]
5 @ O 2 -z
O
6 / O 3 -w—2z+u
®
®
7 o @) 3 -2z+u
®

4 -w—4z+4u

8 ./:/‘ 4 —2w—4z+4u
o
®
®

0w e o 4 —4z+4u
®

Explicit listing of all degeneracies would be very space consuming. It would also be
unnecessary since we need them only as coefficients in particular functions. These
functions are given for future use in appendix 1.
We define the probability p(i; r;, s;) that the lattice group is in any one particular
state described by (i; r;, 5;). These probabilities satisfy the normalisation condition
1 =(,Z (@ s0p (s 1 52) (3.2)

and are related to the single site probabilities ¢(+1), ¢(0) and ¢(—1), defined in § 2,
by

pY(+1)=1s Y (it ri=s)o (s r s)pGs iy s:), (3.3a)

srus,

py(0)= % Z siw(is ri, s)p(; ry 8i) (3.3b)

(3r,8)
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and
pU(-1)=1% Y (ni—ri—sdw(;r, s)pl;r, s), (3.3¢)

(/D]
where p = M/N is the molecular number density, related to the volume v per mole-
cule by pv = V,. From equations (2.8) and (3.3)

p=% Y nw(;rs)p;n,s). (3.4)
(isrisso)

We obtain the thermodynamic equilibrium state by considering a system in
chemical isolation and in thermal and mechanical equilibrium with its environment,
which has absolute temperature T and exerts a pressure P. The thermodynamic
potential per molecule for such a system is the chemical potential u (&, {p(i; r, s:)}).
This is given by

(& {pG; r, s)})
=%va+ec({p(i; o 5D+ ex( €2, {w(z)})-%kr nglplins)) (3.5

where

1 , ,
e({pl;n si)})=;(‘_Z eiw(i; ry, s)plis riy 8i) (3.6)
is the non-electrostatic configuration energy per molecule and the electrostatic
contribution e,(2Z, {/(1)}) to the energy per molecule is given by equation (2.11). The
configurational counting factor g({p(i; r, s:)}) is calculated according to the method of
the Guggenheim and McGlashan approximation. We write

go{py (HHN'!

g({p(la ri, si)}) = I_I(x';r,«,s;) [{Np(l, v si)}!]w(l';n,s() (37)
and impose the condition
N!
{Npw (+ DN P[{Npy ONT[{Noy (- DHFIN (1~ p)]!
= ¥ gloG;r s, (3.8)

{p(i;sr,s)}

where the summation is over all {p(i; r;, s;)} compatible with (3.2) and (3.3) with fixed
values of {¢/(])} and p. It can be shown that the summation on the right-hand side of
(3.8) can be approximated by its largest term. This is given (see appendix 2) by

ps 1y 1) = WD TGOy (- TTRM (1) (3.9)
and from equations (2.11), (3.5)»-(3.9) we have
w(EE, {p@i;r s)})

=%va—zz:B<e,:>(w(+1)—w(—l»+C(e:::>

1
+; Y, @@, s)psr, s)le+kT Inp(;r,s))
@i;ru8,)
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—3kT[2¢(+1)In ¢ (+1)+8¢(0) In ¢(0)+2¢(-1) In ¢(-1)+Inp
+(p "= In(1-p)). (3.10)

We minimise the chemical potential with respect to {p(i; ;, s;)} and p at constant
€¥, P and T. The variables {¢/(I)} are given by (3.3). The details of the calculations
are given in appendix 2. A compact form for the results is in terms of the new
variables 6, ¢ and y, the function F defined by equation (A.15) or (A.16) and the
parameters {8;} defined in equation (A.14). We have

Bi exp(rif +s:d +nix)

Pl s =gy s 6 30) (3.1

wery=exp[3(0-E2) [ aGa2, 0,60, (3.120)

(W(0) = exp8)/ (4G (EE, 6, ) (3.126)

w1y =exp| ~3(0- 225 Juo ez, 0,4 (3.120)
and

(py=1- (STl (3.13)
where

G(%%, 0, ¢)=cosh[g(0~%e—@)] +2 explo). (3.14)

Substituting from equations (3.11)-(3.14) we have the equilibrium expression for the
chemical potential

w(&F, Lp;r s}

{(p)
= Cet +kT[4 -3In(;=2—) +31n G(4, 6, ] 3.15
(€2 + kT 4x =3 1n(5 2 (82,6, ) (3.15)
Equation (3.13) relates the four variables (p), 6, ¢ and y at constant €*, P and T. In
order to completely determine these variables we need three more equations. These
are given by substituting from (3.11) into (3.4) and from (3.12) into (3.3). We have

F i1 6, @,
-k
sinh{3{8 — (82B(e)/4kT)]} _ Fi(1B:}; 6, ¢, x) (3.17)
G(%,6,0) . F({B:}; 6, ¢, x)
and
2expe) _F({B8:}: 6, 6, x) (3.18)

G(g:a 99 ¢)—F3({ﬂ,}; 0’ ¢’ X)’

where the functions Fy, F> and F; are defined in equations (A.17)-(A.21).
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Consider now the case where &g = 0. It follows from equation (A.22) that (3.17)
has a solution 8 = 0 and from (A.25) that (3.18) has a solution ¢ =0. From (3.17)

%’*B(em)

6 ~——— (1+3f{B:}; x)) (3.19)

as €% >0, where

1oy (46381 0,0,x)  \7! 3
k0= (55 a0 03 (320)
and
o _dF

Fn—?oj—aoz. (3.21)

Substituting in equations (3.12a) and (3.12¢)
®

Wiy~ (1+E BB g 1) (.220)

and
1 g*B(em)

W~ (1-=E2 08 0)) (3.226)

and hence from equations (2.10) and (2.12a)
3h(a*v; Em)emg* oh(a*v; em)f({Bx} X)
M~ ( 3T +a*). (3.23)

In the limit as the external electric field tends to zero, the static dielectric constant €*
arising from the molecular dipoles is given by

(nXp)~(e*—1)& (3.24)
and imposing the consistency condition
en=e* (3.25)

we have from equation (3.23)
(e* —1)(26 +1)
€*

ogh(a*v; €*)f({Bi}; x) a*)- (3.26)

3kT

Equation (3.26) is the generalisation of Onsager’s equation which takes account of the
effects of hydrogen bonding. From equations (A.27) and (3.20)

fQih =1 (3.27)
and in this case, where all interaction energies are set equal to zero, equation (3.26)
reduces to (1.1).

The variables (p) and y which feature in equation (3.26) are obtained as a solution
of equations (3.13) and (3.16) with 8 =¢ =0. To obtain the liquid-vapour phase
transition we use Maxwell’s rule and equation (3.15) with G(0, 0, 0)= 3.

It will be observed that, throughout our calculations of the equilibrium state, we

have treated €X as a constant, applying the consistency condition (3.25) only at the
final stage of the work. The result of this assumption is that, in the zero electric field

=3(p)h(a*v; e *)(
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limit, equations (3.13) and (3.15) are equivalent to equations (4.5) and (4.2) respec-
tively of Bell (1972), the term C(e) in equation (3.15) being a constant which affects
only the zero point of the chemical potential. An alternative treatment would be to
assume that €% = €%(p, T) in equation (3.10). Equation (3.13) would then contain the
partial derivative of €} with respect to p. After application of the consistency condi-
tion this partial derivative could be obtained by differentiating equation (3.26). This
in turn would produce the partial derivative of y with respect to p which would have
to be derived by differentiating equation (3.16). Although this treatment would be
physically more satisfactory in that it would lead to an electrostatic effect on the
isobars, it would be very much more complicated. Our method which is equivalent to
neglecting C(eX) in equation (2.11) can be regarded as an approximation to this more
difficult work.

4. Results and discussion

The main purpose of this work is to obtain, for our model, curves of the dielectric
constant of liquid water against temperature along isobars. Equation (3.26), which is
our equation for the dielectric constant, contains the variables {p) and y. The values
of these variables at fixed values of the reduced temperature 7% = (kT/w) and the
reduced pressure P* = (PV,/w) are obtained from equations (3.13) and (3.16) (with
6 =¢ =0). A consequence of our assumption that €. is a constant is that the isobars
of our model are exactly those of Bell (1972) with the same values of the critical point
parameters and the same liquid—vapour transition temperature at fixed pressure.

One difficulty associated with the use of a lattice model, like that of Bell, is that the
pressure and temperature are given in reduced form. Comparison with experiment
involves calculation of the energy parameter w and the volume per site V,. We also
need to assume some values for the energy ratios (z/w) and (u/w). Bell calculated
four points on the reduced temperature scale; the critical temperature T, the
liquid-vapour transition temperature Ty, and the temperatures T* and T} at which
the density is maximum and the compressibility is minimum, respectively, along an
isobarf. The last three of these are, of course, functions of pressure and all four are
dependent on the ratios (z/w) and (u/w). The strategy adopted by Bell was, for a
number of different values of (z/w) and (u/w):

(i) to calculate the reduced atmospheric pressure P} using the formula

P:‘—‘P:‘(Pa/Pc) (41)

where P, and P, are the experimental values of the atmospheric and critical pressures
respectively;

(ii) to calculate T, T.F and T.¥ along the isobar P* = P,

Of the three values of the pair (z/w, u/w) chosen by Bell, in only one case, that of
z/w=2-0, u/w=1-25, was T < T¥. Since this condition is essential for our work,
these are the values for the energy ratios which we have chosen. In table 2 we list the
reduced critical temperature and pressure together with the reduced atmospheric
pressure, derived from equation (4.1), and the phase transition and density maximum
temperatures on the isobar.

t A further point on the reduced temperature scale would be obtained by the introduction of long-range
ordering and the calculation of the liquid—solid phase transition temperature, as has been done in the case of
the two-dimensional triangular model of Bell and Lavis (1970) by Lavis (1973). This work is underway.
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Table 2. Experimental data required for the present calculations together with the results
of the calculations.

Critical point data

Experimental data® (z/w)=2:0, (u/w)=1:25
T.=647-30K T*=1.3537
Tpy=373-15K P¥=0-0516
T,=277-15K
P.=221x10'Nm™ On the atmospheric isobar
P,=1-01x10°Nm™
£,=6:14x107°Cm P¥=0-00024
a=2111x10"*m’ T =0-5879

T} =0-4927

Derived quantities

w=6599x1072%] V,=15-39x1073 m?
(o/w)=41-88 a*=137

a From Eisenberg and Kauzmann (1969).

To calculate the energy parameter w and the volume V; per site we use the
equations

w=kT,/T* 4.2)
and
V.= wP¥/P.. (4.3)

The necessary experimental data, together with the results of our calculations are
given in table 2. It is difficult to make a direct comparison with experiment for w, but
V, can be compared with the value 16-:01 x 107*° m? derived from the body-centred
cubic structure of ice I(c) and the value 18:77 x 107> m® derived from the maximum
in the radial distribution function of liquid water (see Eisenberg and Kauzmann 1969,
pp 83 and 159 respectively). To complete our set of fixed parameters we need values
for (o/w) and a*. For the permanent dipole moment and polarisability of the water
molecule we use values derived from experiment. These are given in table 2, together
with the results of our calculations.

Using the values for the reduced boiling and maximum density temperatures,
together with their experimental values given in table 2, we calculate a reduced
freezing temperature T:*=0-4887. Atmospheric isobars for the static dielectric
constant are obtained in the range [T¢*, Ti] of reduced temperatures for varying
values of the parameter v = V,/ V,,. Equating this range of reduced temperatures with
the experimental range [273-15K, 373:15 K] we display our results in figure 2,
together with the experimental curve for the static dielectric constant derived from the
values of Malmberg and Maryott (1956). As the value of » increases (and thus for
fixed V, the value of V; decreases) our curve rises to higher values at all temperatures.
For »=0-505 we have a curve within 6% of the experimental values for the whole
temperature range. In this context it is interesting to note that Onsager (1936) chose a
cavity of volume equal to the volume per molecule. This, in our notation, corresponds
to »=(p). The value »=0-505 is quite close to the molecular number density
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0-250

40
0.700

273 .15 323.15 37315
T {K)

Figure 2. Curves for the static dielectric constant, plotted against absolute temperature
along the atmospheric isobar for various values of the parameter » = V,/ V. The broken
curve represents the experimental results of Malmberg and Maryott (1956).

predicted by our model (see Bell 1972, figure 2). Since our model effectively provides
an equation of state relating pressure, density and temperature, we are able to obtain
isotherms for the dependence of the dielectric constant on the pressure. A selection of
these curves is shown in figure 3. As is to be expected the dielectric constant is a
monotonically increasing function of pressure.

In figure 4 our curve (with » = 0-505) for the dielectric constant against tempera-
ture, along the atmospheric isobar, is displayed together with the experimental curve
and the theoretical curves derived by other authors. With the exception of the curve
of Hobbs et al (1966) all these results have been obtained by application of Kirk-
wood’s equation (Kirkwood 1939). Oster and Kirkwood (1943) applied Kirkwood’s
equation to the problem of the dielectric constant of water, taking into account the
effect on the orientation and polarisation of a molecule of only the shell of first-
neighbour molecules. Pople (1951) applied Kirkwood’s equation to his own distorted
hydrogen bond model. He took into account the effects of the first three shells of
nearest neighbours on the molecular orientation, but restricted the contribution to
molecular polarisation to the shell of first neighbours. His resuits have since been
modified by Eisenberg and Kauzmann (1969) to include the effects of the first three
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Figure 3. Curves for the static dielectric constant, plotted against pressure along various
isotherms. The curves are labelled with their values of absolute temperature and the

n

horizontal axis changes scale at P=1-5x10° Nm™. The curves drop vertically at the
transition to the vapour state.

shells of neighbours on polarisation (see Eisenberg and Kauzmann 1969, figure 4.17,
p 190). The resulting curve corresponds well with the experimental curve. Haggis et al
(1952) apply Kirkwood’s equation to a mixture model. They assume that a certain
fraction of hydrogen bonds is broken at any given temperature and that the liquid is a
mixture of molecules forming 0, 1, 2, 3 and 4 hydrogen bonds. In order to give
agreement with experiment they chose the fraction of broken bonds at 273-15 K to be
0:09 and determined the fraction of broken bonds at other temperatures from ther-
modynamic considerations. This gave a curve for the dielectric constant in good
agreement with experiment. More recently Bruk-Levinson et al (1971) have applied
the potential of Stockmayer (1941) in order to obtain the molecular correlation
function of Kirkwood’s equation and Jansoone and Franck (1972) have used the
approach of Wertheim (1971) based on the mean spherical model. In neither of these
cases is the result particularly satisfactory. Finally the work of Hobbs er al (1966)
should be referred to. This is based on a generalisation of Onsager’s equation in
which a certain fraction of molecules are assumed to be solid-like and the remaining
molecules are assumed to be gas-like. Since they have calculated values of the
dielectric constant in the liquid range at only freezing and boiling temperatures, it is
difficult to assess their results,

We would not attempt to pretend that we have with our model derived the most
accurate theoretical curve for the dielectric constant so far obtained. Indeed the
results of Hasted er al (1952) and of Pople (1951), modified by Eisenberg and
Kauzmann (1969), give good agreement with experiment. The main point about our
model is that it is more nearly ‘complete’ than previous work. We need take from
experiment only the critical point data, the freezing, maximum density and boiling
temperatures and the values of the dipole moment and polarisability of the molecule.
Once this is done the curve for the dielectric constant can be derived. For all
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Figure 4. Curves for the static dielectric constant, plotted against temperature along the
atmospheric isobar. The broken curve represents the experimental results of Malmberg
and Maryott (1956), the chain curve is given by the present work with » =0-505, z/w =
2-0, u/w =125 and the dotted curve is the corresponding curve for the ‘pure’ Onsager
equation. The full curves are the theoretical curves of: A, Oster and Kirkwood (1943); B,
Pople (1951); C, Haggis et al (1952); D, Bruk-Levinson et al (1971); E, Jansoone and
Franck (1972); F, Hobbs et al (1966).

calculations based on the Kirkwood equation, experimental data (density, number of
bonded molecules etc) are needed at successive points along the curve. This also
applies to the modified Onsager model of Hobbs et al (1966). Another important
advantage of our model is that it enables us to distinguish clearly between the effects
on molecular orientation of long-range electrostatic forces and short-range bonding
interactions. In figure 4 we have, for the sake of comparison, included the curve
corresponding to the ‘pure’ Onsager equation (1.1), where v = V,/(p) is given, as
before, by equation (3.16) with 8 = ¢ =0. The difference between the curve for our
modified Onsager equation and that of the pure Onsager equation clearly illustrates

the important role of hydrogen bonding in producing the high dielectric constant of
water.
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Appendix 1

For the molecular configurations on the lattice group, given in table 1, we define the
functions

Q(I;0a¢)=z w(ly T, Si)exP(ori+¢5i) i=192,--"109 (A‘l)

where the summation is over all values of »; and s; compatible with the particular
configuration i. It is clear that

O(1;6,¢)=w(1;0,0)=1 (A2)
and

QQ2;0,¢)=42 e’ +8e®+2e7%)=16x(6, @), (A.3)
where

x(8, ¢)=cosh 8 +2 e®. (A.4)

Since the two molecules in state 3 are, once placed on a particular pair of sites, free to
assume any orientations, we have

0(3; 0, ¢)=32x%(6, ¢). (A.5)
For configuration 4
04;60,¢)=4("+4e P +8e +4 e 1e72%)=8y(6, &), (A.6)
where

y(8, #)=cosh 26 +4 ¢® cosh 6§ + 4 *¢. (A7)

The corresponding () for configurations 5 to 10 can now be expressed entirely in terms
of the functions x and y. We have

Q(5; 6, 8)=8(8x°(6, ¢)—y(6, 8)), (A.8)
Q(6; 6, 6)=64x(8, ¢)y(6, &), (A.9)
(7; 6, &)= 64x(8, 6 )4x*(6, $)~y(6, D)), (A.10)
0(8; 6, d)=8y%(6, &), (A.11)
Q(9; 6, ¢)= 16y (6, 6)(8x>(6, &)~y (68, &) (A.12)

and

0(10; 8, ¢)=8(32x*(8, $)~ 16x°(8, #)y (8, )+ y*(6, B)). (A.13)



2168 D A Lavis and N I Christou

It is clear that Q(i; 0, 0) is identical to the degeneracy w; of Bell (1972). In terms of

the energies {¢;} given in table 1 we define
B; = exp(—e.-/kT) i= 1, 2, ey 10,

and the function

F(B}; 0, 6. x)= Y. Bwlisr,s;)exp(fr;+ds;+xn:),

Gi:ris1)

which can also be written

F{B:};6,¢,x)= Z,- BiCUi; 8, &) exp(xmi).

We shall also need

Fi({B:};6, 6, x)
oF

= Y = Y Birwli;r, s:) exp(0ri +bsi+ xni)
[(H2)

=‘T~‘ B0 (8, @) exp(xm:),

and
Fy({B:}; 6, ¢, x)
oF .
=—= Y Bisw(i;r, s)exp(0r;+ds; +xn:)
3¢ [(H/%0)]
=Y. BiQ0(6, ) exp(xmi),
where
Ql = 60/60
Qz = 6Q/G¢>
and
F3({B:}; 6, &, x)
oF .
=—= Y Bnw(i;r,s)exp(0r+os+xn)
X Girs)
=Y. BiniCU6, &) exp(xn:).

It is clear, from equation (3.1), that

Fi({8:}; 0,6, x)=0

and using the results that

(%)9=¢=0= 24(0, 0)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
(A.20)

(A.21)

(A.22)

(A.23a)
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(%)o=¢=o=%”°’ 0) (A.23b)
it is not difficult to show that

Q2(i, 0, 0)=%mQ(i; 0, 0), (A.24)
from which it follows that

F({8:}; 0,0, x)=3F3(8:}; 0, 0, x). (A.25)
From

Y wlisn, s)= M2 8 (A.26)

Bt =9 Bn—r—s)i@=n)

where the summation is over all configurations for which r; =, 5, = s and n; = n, it can
be seen that
F({1}; 6, ¢, x)=[1+4 e*(cosh 8 +2 e*)]*. (A.27)
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